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Abstract: - Single base substitutions occur in genomic sequences when a single base gets replaced by another 
base. These base substitutions are also called point mutations. Mutation detection is important as these are 
linked to genetic disorders. Several direct and indirect methods are available to detect sequence variation in 
specific regions of DNA (Deoxyribonucleic acid) sequences. However indirect methods cannot perfectly 
identify the mutation location in the sequence. Also these methods require mutation confirmation by visual 
analysis. Thus for automated detection of base substitutions, signal processing methods offer the advantage of 
simpler, faster and more accurate localisation of point mutations. In this paper, a novel graphical method using 
wavelet transforms to identify single base changes in H5N1 Influenza A virus has been proposed. The paper 
discusses the graphical plots of wavelet transformed Hemagglutinin (HA) and Neuraminidase (NA) nucleotide 
sequences to identify the locations of base changes. 
 
 
Key-Words: -Base substitutions, genomic sequences, wavelet transforms, multiresolution decomposition, 
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1 Introduction 
Most of the genetic disorders are linked to 
nucleotide substitutions thus their accurate 
identification is particularly important [1]. DNA 
sequencing is a direct method for detecting 
mutations as well as their locations in the DNA 
sequence.  There are several indirect methods also 
for mutation detection such as denaturing gradient 
gel electrophoresis (DGGE), denaturing high 
performance liquid chromatography (DHPLC), 
temperature gradient gel electrophoresis (TGCE), 
single stranded DNA conformation analysis (SSCP), 
chemical or enzyme cleavage mismatch (CECM) to 
name a few. These indirect methods are not capable 
of localizing the mutation location and require 
confirmation by DNA sequencing. Fluorescence 
based sequencing instruments are capable of 
automated detection of single point mutations by 
direct comparison of sequence chromatograms of a 

reference and suspected mutant. Several software 
based methods such as Trace Difference,SeqDoc 
[3]ABI SeqEd, PE/ABI Factura[4] Mutation 
Surveyor and Mutation Explorer [5] determine 
mutation points by trace subtraction of a reference 
and a given sequence. These trace subtraction 
methods have the disadvantage of context effects 
and variations in the intensity of the sequences 
which further requires normalizing the traces before 
their comparison. 

Although sequencing method is sufficient for the 
discovery of single-nucleotide variations, but 
simpler, faster, and more automated methods are 
needed for analyzing the large volumes of 
sequenced genomic data available data post the 
Human Genome Project. Methods utilizing signal 
processing techniques have the advantage of faster 
processing of already sequenced DNA sequences in 
comparison to conventional laboratory methods. 
Signal processing methods are able to reveal large 
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scale features of DNA sequences at the scale of the 
whole genome or chromosomes [6]. Genomic signal 
processing approach has been used to study 
multiresistance mutations in HIV virus [7], H5N1 
virus [8] and Mycobacterium Tuberculosis [9] to 
analyze and track the development of drug 
resistance.  

A wavelet transform based graphical approach to 
identify base substitutions and hence mutation 
points in DNA sequences of Influenza A virus has 
been described in this paper. This method provides 
automated detection of sequence changes by visual 
analysis of the peaks in the plots of two compared 
DNA sequences: a reference and a subject. These 
graphs are the plots of the difference of wavelet 
coefficients of the transformed DNA sequences of 
Influenza A virus. Section 2 gives a brief 
introduction about the Influenza A virus whose 
analysis has been performed. An insight of wavelet 
transforms is given in section 3 followed by the 
method of sequence analysis using wavelet 
transforms (WT) in section 4 and observations in 
section 5.  
 
 
2 Influenza A Virus and 
Representation 
Influenza A virus is a member of the 
orthomyxoviridae family. The genome of influenza 
A virus is divided into eight distinct linear segments 
of negative-sense single stranded RNA [Fodor and 
Brownlee[10]including: HA (hemagglutinin), NA 
(neuraminidase), NP (nucleoprotein), M (two matrix 
proteins, M1 and M2), NS (two distinct non-
structural proteins, NS1 and NEP), PA (RNA 
polymerase), PB1 (RNA polymerase and PB1-F2 
protein), and PB2 (RNA polymerase).  

Influenza A and B viruses contain surface 
glycoproteins: the hemagglutinin (HA) and the 
neuraminidase (NA). Both proteins recognize the 
same host cell molecule, sialic acid. The HA 
segment of Influenza virus binds to sialic acid-
containing receptors and initiates virus infection. 
NA segment helps to spread of the infection to 
neighboring cells by releasing progeny virus. The 
influenza virus undergoes a larger number of 
mutations in HA and NA proteins as compared to 
the other protein segments. These mutations in HA 
and NA proteins help in easy replication of virus in 
the host by allowing them to evade the host’s 
immune response [11]. Thus studying the mutations 
in the HA and NA proteins is of utmost importance 
as they can help to track the efficacy of specific 

drugs in containing the infection during viral 
epidemics. 
DNA is the main nucleic genetic material of the 
cells with a double helix structure and two 
antiparallel intertwined complimentary strands. 
There are four kinds of nitrogenous bases found in 
DNA that constitute the genomic sequences: 
thymine (T) and cytosine (C) - called pyrimidines, 
adenine (A) and guanine (G) - called purines.  Base 
A always pairs with base T while base C always 
pairs with base G. Hence, the two strands of a DNA 
helix are complementary and contain exactly the 
same number of A-T bases and the same number of 
C-G bases. 

To apply a signal analysis method, the genomic 
sequences have to be expressed mathematically 
first. There are several methods of mathematical 
representation such as Voss representation [12]  
purine – pyrimidine representation[13], mapping of 
the nucleotides onto a complex tetrahedral plane[14] 
complex number representation [15],electron ion 
interaction potential (EIIP)[16] and integer number 
representation. 
 
 
3 Wavelet Transform 
A brief insight of WT is being reproduced here from 
wavelet documentation [17]. A waveform of finite 
duration and zero average value is called a wavelet. 
WT is calculated using a mother wavelet function 
ψ(t), by convolving the original signal with the 
scaled and shifted version of the mother wavelet 
using Eq. (1). Mathematical transforms such Fourier 
Transforms (FT) and Short Time Fourier Transform 
(STFT) are also used in signal processing and 
analysis. Whereas FT only give information about 
the various frequency components in a particular 
signal, STFT does provide the time-frequency 
localization of the signal but in a fixed window 
frame. Wavelet transforms in comparison to FT and 
STFT, offer the advantage of time frequency 
localisation of a signal by using windows of varying 
sizes and hence are capable of multi resolution of 
signals. There are two types of wavelet transforms: 
continuous wavelet transforms (CWT) and discrete 
wavelet transforms (DWT).  
   

     (1)  
 
Continuous wavelet transforms generate a large 

amount of data as the transform is calculated at all 
possible scales and positions and require larger 
computation time. In discrete wavelet analysis, 
scales and positions are chosen based on powers of 

1 *( )( )
t

t bCab f t dt
aa

ψ −
= ∫
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two called the dyadic scales. After discretization the 
wavelet function is defined as given in Eq(2), where 
a0 and b0 are constants.  

 
(2) 

 
 
 
The scaling term is represented as a power of a0 

and the translation term is a factor of a0
m.Values of 

the parameters a0 and b0 are chosen as 2 and 1 
respectively and is called as dyadic grid scaling. The 
dyadic grid wavelet is expressed in Eq (3). 

 
 

(3) 
 

(
2 

This scheme, implemented using filters was 
developed by Mallat[18]. The basic filtering process 
is represented in Fig. 1. The original signal is 
filtered through a pair of high pass and low pass 
filters and then down sampled to get the 
decomposed signal through each filter which is half 
the length of the original signal. The signal S can 
bewritten as s=cD+cA. 
 

 
 
 
 
 
 
 
 
 
 
 

After the analysis of the signal, the original 
signal can be synthesized using inverse discrete 
wavelet transform. The signal is reconstructed as 
shown in Fig. 2 by up sampling of the decomposed 
signal followed by filtering through two 
complementary filters and is expressed as A + D = 
S. The low-pass and high-pass decomposition filters 

(L and H) and reconstruction filters (L' and H') 
together form a set of quadrature mirror filters as 
shown in Fig. 3.  

 
 
 

The resolution of the signal is a measure of the 
amount of detail information in the signal, can be 
changed by the filtering operations, and the scale 
can be changed by up sampling and down sampling 
operations.The decomposed signal can be broken 
down into lower resolution components by 
decomposing the successive approximations 
iteratively. Signal decomposition at different 
frequency bands is successive high-pass and low-
pass filtering and forms the basis of multi resolution 
decomposition (Fig. 4). The signal can be analyzed 
at different frequency bands and resolutions by 
decomposing the signal into a coarse 
approximations and details. Similar relationships 
also hold for the reconstructed signal (Fig. 5). 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
The decomposed signal can be written as s = 

cA2+cD2+cD1. Similarly the signal can be 
reconstructed from the successive approximations 
and details as A2+D2+D1 = S.There are two 
functions associated with the low pass and high pass 

/2
,

1 2( ) ( ) 2 (2 )
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Fig. 1Signaldecomposition 

Fig. 2  Signalreconstruction 

Fig. 4Multilevel signal decomposition 

Fig. 5Multilevel signal reconstruction 

Fig. 3Signaldecomposition and reconstruction 
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filters and are called scaling functions and wavelet 
functions respectively. 
 
 
4 Method 
Different nucleotide sequences of HA and NA 
proteins of H5N1 virus taken from the different 
hosts occurring in different regions (India) were 
downloaded from NCBI (National Center for 
Biotechnology Information)[19] database for 
comparison. The sequences were first aligned using 
nucleotide BLAST (Basic Local Alignment Search 
Tool) [20] and converted into mathematical form 
using integer number representation (A=1, C=2, 
G=3, T=4).These sequences were then transformed 
using discrete Haar wavelet transform.  

Several comparisons for the synthesized signal 
were made at different levels of multi resolution 
decomposition using WT. The multi resolution 
analysis decomposes the signal of length 2n into 
approximations and details at various levels (1-n). 
Whereas wavelet coefficients at higher scales 
correspond to low frequency components in the 
signal (approximations) and determine the global 
features of the sequence, wavelet coefficients at 
smaller scales (details) determine high frequency 
information and therefore local variations. The 
overall trend of the sequence can be visualized by 
the plot of approximation coefficients of the entire 
sequence. The sequences were analyzed at various 
levels of decomposition and best results were 
obtained at 4th level of decomposition of the signal, 
hence the decomposition level was chosen to be 4. 
To locate the positions of base changes in a 
sequence, a pair of sequences were compared - one 
sequence taken as a reference and other as a subject. 
The reference sequence was chosen randomly. Both 
the sequences were first decomposed and then 
reconstructed upto level 4 using discrete Haar 
wavelet transform. To determine point mutations, 
the reference and subject sequences were compared 
by plotting the difference of wavelet detail 
coefficients of level 1 and level 2 respectively for 
both the sequences. The locations on the plots along 
the sequence length showed peaks at the places 
where base changes had occurred. 

For determining point mutations in NA proteins 
of Influenza sequences, a reference sequence 
(accession number CY090110.1) was compared 
with two subject sequences (accession numbers 
CY090126.1 and CY090118.1). The difference of 
the detail coefficients at levels 1 and 2 for the 
complete sequence length (CY090126.1 and 
CY090118.1) were plotted (shown in Figs. 6 and 7 

respectively). To locate point mutations in HA 
sequences, a subject HA protein sequence with 
accession number GQ917229.1 was compared with 
a reference sequence GQ917227.1. Point mutations 
for the complete sequence length are shown in Fig. 
8. Another subject HA sequence (accession number 
JQ319658.1) was compared with a reference 
sequence (accession number JQ319657.1). The 
point mutations for this sequence are shown in Fig. 
9. These plots appear flat at the places where the 
two sequences are perfectly identical as can be seen 
in Fig. 6 along sequence length between 200-400 
bases, 500-600 bases and 1000-1100 bases. In Fig. 
7, the two compared sequences are identical in 
regions around 1-100 bases, 450-550 bases, 600-700 
bases. In Fig. 8 identical sequence regions are 0-300 
bases, 400-600 bases, 900-1100 bases, 1500-1600 
bases. Fig. 9 shows similar sequence regions around 
0-700 bases, 800-1300 bases and 1350-1500 bases. 
The plots show peaks at places where the sequence 
bases have undergone changes.  

The peaks of the difference coefficients exhibit 
both positive and negative magnitudes, so the exact 
location of the base changes can be identified by 
seeking coincident peaks of detail coefficients of 
both the decomposition levels 1 and 2 in the plot. 
The position along the sequence where the peaks of 
the level 1 and level 2 difference coefficients plot 
are either coincident or significantly overlapping are 
the locations of mutations. The magnified views for 
different subject NA sequences CY090126.1 and 
CY090118.1 (compared to a reference sequence) are 
plotted in Figs. 6a-6f and 7a-7g respectively. The 
magnified views of the two subject sequences of HA 
GQ917229.1 and JQ319657.1 compared to 
reference sequences are shown in Figs. 8a-8f and 
9a-9c respectively. 
The algorithm for the implementation of the above 
method is listed below. 
1. Align the downloaded viral sequences to be 

compared using BLAST.  
2. Convert the nucleotide sequences into 

mathematical sequences. 
3. Using Haar wavelet transform, decompose and 

reconstruct the mathematical sequences 
(considering one sequence as reference and one 
sequence as subject) into details at levels 1 and 
2. 

4. Compare the detail coefficients for reference 
and subject sequence at levels 1 and 2. 

5. Plot the difference in detail coefficients at both 
the levels. 

6. Identify the positions of base changes that the 
locations of the peaks for level 1 detail 
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coefficients which are either coincident or have 
major overlap with the peaks for level 2 details. 

 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
Fig.6b Sequence comparison CY090110.1 and CY090126.1 

(400-600 bases) 
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Fig.6c Sequence comparison CY090110.1 and CY090126.1 
(600-800 bases) 
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Fig.6 Sequence comparison CY090110.1 and CY090126.1 
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Fig.6a Sequence comparison CY090110.1 and CY090126.1 
(0-200 bases) 
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Fig.6e Sequence comparison CY090110.1 and CY090126.1 

(1000-1200 bases) 
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Fig.6f Sequence comparison CY090110.1 and CY090126.1 

(1200-1380 bases) 
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Fig.6d Sequence comparison CY090110.1 and CY090126.1 

(800-1000 bases) 
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  Fig.6e Sequence comparison CY090110.1 and CY090126.1 

(1000-1200 bases) 
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Fig.7 Sequence comparison CY090110.1 and CY090118.1 
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Fig.7c. Sequence comparison CY090110.1 and CY090118.1 
(400-600 bases) 
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Fig.7aSequence comparison CY090110.1 and CY090118.1 

(0-200 bases) 
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Fig.7d Sequence comparison CY090110.1 and CY090118.1 
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Fig.7b Sequence comparison CY090110.1 and CY090118.1 
(200-400 bases) 
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Fig.7f Sequence comparison CY090110.1 and CY090118.1 

(1000-1200 bases) 
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Fig.8 Sequence comparison HA917227.1 and HA917229.1 
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Fig.7eSequence comparison CY090110.1 and CY090118.1 

(800-1000 bases) 
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            Fig.7g. Sequence comparison CY090110.1 and CY090118.1 

        (1200-1380 bases) 
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Fig.8a Sequence comparison HA917227.1 and HA917229.1 

(200-400 bases) 
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Fig.8cSequence comparison HA917227.1 and HA917229.1 
(700-900 bases) 
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Fig.8b Sequence comparison HA917227.1 and HA917229.1 

(500-700 bases) 
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Fig.8d Sequence comparison HA917227.1 and HA917229.1 

(1100-1300 bases) 
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Fig.8fSequence comparison HA917227.1 and HA917229.1 

(1500-1720 bases) 
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  Fig.8e Sequence comparison HA917227.1 and HA917229.1 

(1300-1500 bases) 
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Fig.9Sequence comparison HA319657.1 and 319658.1 
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5 Observations 
Based on the proposed method using wavelet 
transforms, following observations were made.  
1. The difference plots for wavelet transformed NA 
sequences with accession numbers CY090110.1 
(reference) and CY090126.1 (subject) show 18 
peaks hence 18 mutations. Thus it can be seen that 
even though these viruses were sequenced in the 
same year (2008), they have undergone 18 base 
changes. The exact locations of base changes were 
localized by the coincident or overlapping peaks of 
details coefficients at levels 1 and 2 (Figs. 6a-6f). 
The number of mutations and their locations 
identified by WT method were confirmed 
bycomparison with the base change locations of  
sequence alignment tool, BLAST and were found to 
be perfectly similar.   
2. The NA protein sequences CY090110.1 
(reference sequence) and CY090118.1 (subject 

sequences) when compared perfectly localized 32 
out of 34 base changes on comparison with BLAST. 
The exact location in the sequence where base 
changes occurred is shown in figures (7a-7g). Of all 
the base changes detected, the method however, did 
not perfectly locate only 2 base changes in the 
difference plots at positions 122 and 123 along 
sequence. Though the detail coefficients at level 1 
were existing and the peaks for detail coefficients at 
level 2 were missing, the exact locations could not 
be identified. But the existence of peaks at level 1 
meant that mutations had occurred at these 
locations. 
3. The wavelet detail coefficients plots for HA 
protein sequences GQ917227.1 (reference) and 
GQ917229.1 (subject) identified the location of all 
the 12 base changes perfectly as can be seen in Figs. 
8a- 8f. 
4. The wavelet detail coefficients plots of 
JQ319657.1 (reference) and JQ319658.1 (subject) 
also perfectly identified all the 6 base changes and 
their locations (shown in Figs. 9a-9c).  

From the above observations, it can be 
summarized that the advantage of using wavelet 
transform method is that only by visual analysis of 
the plot of the detail coefficients; the point 
mutations are evident as compared to BLAST where 
one has to manually count and locate the point 
changes. Of all the base change locations identified 
using wavelet method, no false positives or false 
negatives were observed.  

The methods of sequence trace comparisons of 
DNA chromatograms, such as SeqDoc also uses the 
difference technique to highlight the point changes 
between a reference and subject sequence. But 
chromatograms of the subject sequences need to be 
normalized before subtraction since they are traces 
of intensity. Moreover, these intensity traces are 
subject to background noise. Wavelet approach, on 
the contrary is advantageous as their plots do not 
require any normalization since the text based DNA 
sequences are converted into discrete mathematical 
sequences and then transformed and reconstructed 
using WT. These sequences are also not affected by 
signal noise. WT method can analyze any varying 
length of sequences of the order of 108 bases or 
more. 
 
 
6 Conclusions 
In this paper, a wavelet transform based method has 
been applied to identify base change locations in 
Influenza A virus. Unlike the sequence trace 
comparison method, this method does not require 

Fig.9cSequence comparison HA319657.1 and 319658.1 
(1500-1710 bases) 
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Fig.9b Sequence comparison HA319657.1 and 319658.1 
  (1300-1500 bases) 
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any normalization of sequences and is immune to 
any background noise. Thus wavelet transforms 
offer the advantage of reducing the computational 
complexity and faster identification of sequence 
changes by visual representation of the plot of the 
wavelet coefficients. 

These graphical plots help in determining the 
relatively stable regions in different protein 
sequences of H5N1 only by visual analysis. These 
stable regions can be used as the target regions for 
determining the effect of various drugs on different 
strains of the viruses to identify drug resistance and 
also in vaccine manufacturing. Thus wavelet based 
signal analysis methods and bioinformatics together 
provide a simple tool for analyzing the changes 
undergone by the viral sequences. The availability 
of signal processing methods help in providing 
accurate and faster results for huge amount of 
already sequenced genomic data collected from 
throughout the world during the epidemics, these 
signal data which can be used as a basis for drug 
design and new diagnosis development. 
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